Posted in Մաթեմատիկա

23․09․2021

1․Ճամբարականները որոշեցին ժամացույցի թվատախտակը երկու գծով բաժանել երեք մասի այնպես, որ յուրաքանչյուր մասում եղած չորս թվերի գումարները հավասար լինեն: Որո՞նք են ստացված քառյակները, եթե երկնիշ թվերի թվանշանները իրարից բաժանել չի կարելի:
1.1+2+11+12=26
2.5+6+7+8=26
3.3+4+9+10=26
Պատ.26

2․ Արեգը, Դավիթը և Անին ապրում են նույն շենքում։ Դավիթն ապրում է 2 հարկ բարձր, քան Արեգը, բայց 4 հարկ ցածր, քան Անին։ Ով ո՞ր հարկում է ապրում, եթե Արեգն ապրում է այդ շենքի 3֊րդ հարկում։
Արեգ-3
Դավիթը-3+2=5
Անի-5+4=9

3. Եթե պապիկը ապրի իր ապրած տարիների կեսը և ևս 1 տարի, ապա կլինի 100 տարեկան։ Քանի՞ տարեկան է պապիկը։

պատ.66 տ.

4․ Շենքի յուրաքանչյուր հարկի բարձրությունը 4մ է։ Այդ շենքի 5֊րդ հարկի հատակին փռված գորգը գետնից ի՞նչ բարձրության վրա է գտնվում։
4*4=16

5․Առավոտյան տողանին 25 ճամբարականներ շարվել էին մեկ շարքով: Յուրաքանչյուր տղայի երկու անմիջական հարևանները աղջիկներ էին: Աղջիկներից ոչ մեկը աղջիկ անմիջական հարևան չուներ: Քանի՞ աղջիկ կար շարքում:
պատ.13 աղջիկ

6․Հասարակածի երկարությունը մոտավորապես 40000կմ է: Հաշվի՛ր, թե քանի՞ անգամ պետք է Նոյեմբերյանից Երևան գնաս, որ այդքան ճանապարհ անցնես, եթե Երևանից Նոյեմբերյան 200կմ է:
40000:200=200
պատ.200անգամ

7․Գտի՛ր նշված հաջորդականության 5-րդ և 6-րդ անդամների գումարը:
3, 8, 18, 38, 68, 108
108+68=176

 8) 89057 թվից ջնջեք երեք թվանշան այնպես, որ ստացված թիվը լինի հնարավորինս մեծ:
պատ.90

9. Քանի՞ երկնիշ թիվ կա, որի տասնավորի և միավորի գումարը հավասար է ամենափոքր պարզ թվի և ամենափոքր բաղադրյալ թվի գումարին:
պատ.5

10. Հունիսյան ճամբարի ընթացքում Արևմտյան դպրոցի ճամբարականները կազմակերպեցին ցատկապարկերով վազքի մրցույթ: Արեգը, Դավիթը և Ալենը գրավեցին առաջին երեք տեղերը: Արեգ գրավեց 2-րդ, Ալենը հասավ վերջնագծին Դավթից առաջ: Տղաներից ով ո՞ր տեղը գրավեց:

պատ.-Ալեն առաջին տեղ, Դավիթ երրորդ տեղ:

Unknown's avatar

Author:

Մխիթար Սեբաստացի կրթահամալիր, Արևմտյան դպրոց, 6.5 դասարան

Leave a comment